

pdfreader 0.1.4 Documentation

Overview

pdfreader is a Pythonic API to PDF documents which follows
PDF-1.7 specification [https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf].

It allows to parse documents, extract texts, images, fonts,
CMaps [https://www.adobe.com/content/dam/acom/en/devnet/font/pdfs/5014.CIDFont_Spec.pdf], and other data;
access different objects within PDF documents.

Features:

	Extracts texts (plain and formatted)

	Extracts forms data (plain and formatted)

	Extracts images and image masks as Pillow/PIL Images [https://pillow.readthedocs.io/en/stable/reference/Image.html]

	Supports all PDF encodings, CMap, predefined cmaps.

	Browse any document objects, resources and extract any data you need (fonts, annotations, metadata, multimedia, etc.)

	Document history access and access to previous document versions if incremental updates are in place.

	Follows PDF-1.7 specification [https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf]

	Fast document processing due to lazy objects access

	Installing / Upgrading

	Instructions on how to get and install the distribution.

	Tutorial

	A quick overview on how to start.

	Examples and HowTos

	Examples of how to perform specific tasks.

	pdfreader API

	API documentation, organized by module.

Issues, Support and Feature Requests

If you’re having trouble, have questions about pdfreader, or need some features the best place to ask
is the Github issue tracker [https://github.com/maxpmaxp/pdfreader/issues].
Once you get an answer, it’d be great if you could work it back into this documentation and contribute!

Contributing

pdfreader is an open source project. You’re welcome to contribute:

	Code patches

	Bug reports

	Patch reviews

	Introduce new features

	Documentation improvements

pdfreader uses GitHub issues [https://github.com/maxpmaxp/pdfreader/issues] to keep track of bugs,
feature requests, etc.

See project sources [https://github.com/maxpmaxp/pdfreader]

Donation

If this project is helpful, you can treat me to coffee :-)

[image: _images/btn_donateCC_LG.gif]
 [https://www.paypal.com/cgi-bin/webscr?cmd=_donations&business=VMVFZSDHDFVK6&item_name=PDFReader+support¤cy_code=USD&source=url]

About This Documentation

This documentation is generated using the Sphinx [http://sphinx.pocoo.org/] documentation generator. The source files
for the documentation are located in the doc/ directory of the
pdfreader distribution. To generate the docs locally run the
following command from the root directory of the pdfreader source:

$ python setup.py doc

Table of Contents

	Installing / Upgrading
	Installing with pip

	Installing with easy_install

	Installing from source

	Python versions support

	Tutorial
	Prerequisites

	How to start

	How to access Document Catalog

	How to browse document pages

	How to start extracting PDF content

	Extracting Page Images

	Extracting texts

	Examples and HowTos
	PDFDocument vs. SimplePDFViewer
	How to extract XObject or Inline Images, Image Masks

	How to parse PDF texts

	How to parse PDF Forms

	How to extract CMap for a font from PDF

	How to extract Font data from PDF

	How to browse PDF objects

	How to extract XObject or Inline Images, Image Masks
	Extracting XObject Image

	Extracting Images: a very simple way

	Extracting Image Masks

	Useful links

	How to parse PDF texts
	How to parse PDF markdown

	Useful links

	How to parse PDF Forms

	How to extract CMap for a font from PDF

	How to extract Font data from PDF

	How to browse PDF objects
	Accessing document objects

	Locate objects by number and generation

	pdfreader API
	pdfreader.document submodule

	pdfreader.viewer submodule

	pdfreader.types submodule

Installing / Upgrading

pdfreader is in the Python Package Index [http://pypi.python.org/pypi/pdfreader/].

Installing with pip

We recommend using pip [http://pypi.python.org/pypi/pip] to install pdfreader on all platforms:

$ python -m pip install pdfreader

To get a specific version of pdfreader:

$ python -m pip install pdfreader==0.1.2

To upgrade using pip:

$ python -m pip install --upgrade pdfreader

Installing with easy_install

To install with easy_install from
setuptools [http://pypi.python.org/pypi/setuptools] do:

$ python -m easy_install pdfreader

Installing from source

You can also download the project source [http://github.com/maxpmaxp/pdfreader] and do:

$ git clone git://github.com/maxpmaxp/pdfreader.git pdfreader
$ cd pdfreader/
$ python setup.py install

Python versions support

pdfreader supports Python 3.6+. It might work on 3.4 and 3.5 but was never tested.

It is not compatible with Python 2.

Tutorial

Have a look at the sample file.
In this tutorial we will learn simple methods on
- how to open it
- navigate pages
- exract images and texts.

Prerequisites

Before we start, let’s make sure that you have the pdfreader distribution
installed. In the Python shell, the following
should run without raising an exception:

>>> import pdfreader
>>> from pdfreader import PDFDocument, SimplePDFViewer

How to start

The first step when working with pdfreader is to create a
PDFDocument instance from a binary file. Doing so is easy:

>>> fd = open(file_name, "rb")
>>> doc = PDFDocument(fd)

As pdfreader implements lazy PDF reading (it never reads more then you ask from the file),
so it’s important to keep the file opened while you are working with the document.
Make sure you don’t close it until you’re done.

It is also possible to use a binary file-like object to create an instance, for example:

>>> from io import BytesIO
>>> with open(file_name, "rb") as f:
... stream = BytesIO(f.read())
>>> doc2 = PDFDocument(stream)

Let’s check the PDF version of the document

>>> doc.header.version
'1.6'

Now we can go ahead to the document catalog and walking through pages.

How to access Document Catalog

Catalog (aka Document Root) contains all you need to know to start working with
the document: metadata, reference to pages tree, layout, outlines etc.

>>> doc.root.Type
'Catalog'
>>> doc.root.Metadata.Subtype
'XML'
>>> doc.root.Outlines.First['Title']
b'Start of Document'

For the full list of document root attributes see PDF-1.7 specification
section 7.7.2 [https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf#page=73]

How to browse document pages

There is a generator pages() to browse the pages one by one.
It yields Page instances.

>>> page_one = next(doc.pages())

You may read all the pages at once

>>> all_pages = [p for p in doc.pages()]
>>> len(all_pages)
15

Now we know how many pages are there!

You may wish to get some specific page if your document contains hundreds and thousands.
Doing this is just a little bit trickier.
To get the 6th page you need to walk through the previous five.

>>> from itertools import islice
>>> page_six = next(islice(doc.pages(), 5, 6))
>>> page_five = next(islice(doc.pages(), 4, 5))

Don’t forget, that all PDF viewers start page numbering from 1,
however Python lists start their indexes from 0.

>>> page_eight = all_pages[7]

Now we can access all page attributes:

>>> page_six.MediaBox
[0, 0, 612, 792]
>>> page_six.Annots[0].Subj
b'Text Box'

It’s possible to access parent Pages Tree Node for the page, which is PageTreeNode
instance, and all it’s kids:

>>> page_six.Parent.Type
'Pages'
>>> page_six.Parent.Count
15
>>> len(page_six.Parent.Kids)
15

Our example contains the only one Pages Tree Node. That is not always true.

For the complete list Page and Pages attributes see PDF-1.7 specification
sections 7.7.3.2-7.7.3.3 [https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf#page=76]

How to start extracting PDF content

It’s possible to extract raw data with PDFDocument instance but it just represents raw
document structure. It can’t interpret PDF content operators, that’s why it might be hard.

Fortunately there is SimplePDFViewer, which understands a lot.
It is a simple PDF interpreter which can “display” (whatever this means)
a page on SimpleCanvas.

>>> fd = open(file_name, "rb")
>>> viewer = SimplePDFViewer(fd)

The viewer instance gets content you see in your Adobe Acrobat Reader. Just navigate a page with
navigate() and call render()

>>> viewer.navigate(8)
>>> viewer.render()

	The viewer extracts:

	
	page images (XObject)

	page inline images (BI/ID/EI operators)

	page forms (XObject)

	decoded page strings (PDF encodings & CMap support)

	human (and robot) readable page markdown - original PDF commands containing decoded strings.

Extracting Page Images

	There are 2 kinds of images in PDF documents:

	
	XObject images

	inline images

Every one is represented by its own class
(Image and InlineImage)

Let’s extract some pictures now! They are accessible through canvas
attribute. Have a look at page 8
of the sample document. It contains a fax message, and is is available
on inline_images list.

>>> len(viewer.canvas.inline_images)
1
>>> fax_image = viewer.canvas.inline_images[0]
>>> fax_image.Filter
'CCITTFaxDecode'
>>> fax_image.Width, fax_image.Height
(1800, 3113)

This would be nothing if you can’t see the image itself :-)
Now let’s convert it to a Pillow/PIL Image [https://pillow.readthedocs.io/en/stable/reference/Image.html]
object and save!

>>> pil_image = fax_image.to_Pillow()
>>> pil_image.save('fax-from-p8.png')

Voila! Enjoy opening it in your favorite editor!

Check the complete list of Image (sec. 8.9.5) [https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf#page=206]
and InlineImage (sec. 8.9.7) [https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf#page=214]
attributes.

Extracting texts

Getting texts from a page is super easy. They are available on strings and
text_content attributes.

Let’s go to the previous page (#7) and extract some data.

>>> viewer.prev()

Remember, when you navigate another page the viewer resets the canvas.

>>> viewer.canvas.inline_images == []
True

	Let’s render the page and see the texts.

	
	Decoded plain text strings are on strings
(by pieces and in order they come on the page)

	Decoded strings with PDF markdown are on text_content

>>> viewer.render()
>>> viewer.canvas.strings
['P', 'E', 'R', 'S', 'O', 'N', 'A', 'L', ... '2', '0', '1', '7']

As you see every character comes as an individual string in the page content stream here. Which is not usual.

Let’s go to the very first page

>>> viewer.navigate(1)
>>> viewer.render()
>>> viewer.canvas.strings
[' ', 'P', 'l', 'a', 'i', 'nt', 'i', 'f', 'f', ... '10/28/2019 1:49 PM', '19CV47031']

PDF markdown is also available.

>>> viewer.canvas.text_content
"\n BT\n0 0 0 rg\n/GS0 gs... ET"

And the strings are decoded properly. Have a look at
the file:

>>> with open("tutorial-sample-content-stream-p1.txt", "w") as f:
... f.write(viewer.canvas.text_content)
19339

pdfreader takes care of decoding binary streams, character encodings, CMap, fonts etc.
So finally you have human-readable content sources and markdown.

Examples and HowTos

Advanced PDF data extraction techniques with real-life examples.

PDFDocument vs. SimplePDFViewer

What is the difference? The usecases.

How to extract XObject or Inline Images, Image Masks

Instructions on how to extract different image types for further manipulations.

How to parse PDF texts

Advanced text objects access methods for further parsing.

How to parse PDF Forms

Instructions on how to extract text data from PDF Forms.

How to extract Font data from PDF

It’s possible to extract an embedded font. Let’s read how to do that.

How to extract CMap for a font from PDF

What if you need to see font’s CMap?

How to browse PDF objects

Instructions on how to navigate PDF documents and access it’s objects. Advanced techniques.

	PDFDocument vs. SimplePDFViewer
	How to extract XObject or Inline Images, Image Masks
	Extracting XObject Image

	Extracting Images: a very simple way

	Extracting Image Masks

	Useful links

	How to parse PDF texts
	How to parse PDF markdown

	Useful links

	How to parse PDF Forms

	How to extract CMap for a font from PDF

	How to extract Font data from PDF

	How to browse PDF objects
	Accessing document objects

	Locate objects by number and generation

	How to extract XObject or Inline Images, Image Masks
	Extracting XObject Image

	Extracting Images: a very simple way

	Extracting Image Masks

	Useful links

	How to parse PDF texts
	How to parse PDF markdown

	Useful links

	How to parse PDF Forms

	How to extract CMap for a font from PDF

	How to extract Font data from PDF

	How to browse PDF objects
	Accessing document objects

	Locate objects by number and generation

PDFDocument vs. SimplePDFViewer

	pdfreader provides 2 different interfaces for PDFs:

	
	PDFDocument

	SimplePDFViewer

What is the difference?

	PDFDocument:

	
	knows nothing about interpretation of content-level PDF operators

	knows all about PDF file and document structure (types, objects, indirect objects, references etc.)

	can be used to access any document object: XRef table, DocumentCatalog, page tree nodes (aka Pages), binary
streams like Font, CMap, Form, Page etc.

	can be used to access raw objects content (raw page content stream for example)

	has no graphical state

	SimplePDFViewer:

	
	uses PDFDocument as document navigation engine

	can render document content properly decoding it and interpreting PDF operators

	has graphical state

Use PDFDocument to navigate document and access raw data.

Use SimplePDFViewer to extract content you see in your favorite viewer
(Adobe Acrobat Reader [https://acrobat.adobe.com/us/en/acrobat/pdf-reader.html], hehe :-).

Let’s see several usecases.

	How to extract XObject or Inline Images, Image Masks
	Extracting XObject Image

	Extracting Images: a very simple way

	Extracting Image Masks

	Useful links

	How to parse PDF texts
	How to parse PDF markdown

	Useful links

	How to parse PDF Forms

	How to extract CMap for a font from PDF

	How to extract Font data from PDF

	How to browse PDF objects
	Accessing document objects

	Locate objects by number and generation

How to extract XObject or Inline Images, Image Masks

Extracting Inline Images is discussed in tutorial Extracting Page Images,
so let’s focus on XObject Images and Image Masks.

Extracting XObject Image

Open a sample document.

>>> from pdfreader import PDFDocument
>>> fd = open(file_name, "rb")
>>> doc = PDFDocument(fd)

Have a look at the sample file sample file.
There is a logo on the first page. Let’s extract it.

>>> page = next(doc.pages())

Let’s check a dictionary of XObject resources for the page:

>>> page.Resources.XObject
{'img0': <IndirectReference:n=11,g=0>}

This stands for an XObject named img0, and referenced under number 11 and generation 0.
The object has not been read by pdfreader still. We are lazy readers. We read objects only when we need them.
Let’s see what the object is.

>>> xobj = page.Resources.XObject['img0']

We just read the object (__getitem__ does this implicitly) and now we may access its attributes.

>>> xobj.Type, xobj.Subtype
('XObject', 'Image')

Wow! It’s really an image. Should we care about it’s internal PDF representation?
Of course no, let’s just convert it to
a Pillow/PIL Image [https://pillow.readthedocs.io/en/stable/reference/Image.html] and save.

>>> pil_image = xobj.to_Pillow()
>>> pil_image.save("extract-logo.png")

And here we are!

[image: ../_images/example-logo.png]
Try to open it and see any differences. It’s absolutely the same as in the document.

Now you can manipulate pil_image with usual PIL methods: rotate, convert, blur, split, inverse, merge
and so on, so on, so on.

Extracting Images: a very simple way

A very simple way also exisits.
Use SimplePDFViewer:

>>> from pdfreader import SimplePDFViewer
>>> fd = open(file_name, "rb")
>>> viewer = SimplePDFViewer(fd)
>>> viewer.render()

After rendering all 1st page images are on the canvas

>>> all_page_images = viewer.canvas.images
>>> all_page_inline_images = viewer.canvas.inline_images
>>> img = all_page_images['img0']
>>> img.Type, img.Subtype
('XObject', 'Image')

Now you can convert it with magic to_Pillow() method, save or do whatever you want!

Extracting Image Masks

Image Mask is just a specific kind of image actually. Except it is not always visible directly in your PDF Viewer.
Nevertheless it can be accessed absolutely the same way.

Let’s have a look at the example from Extracting Page Images,
and see what image masks it contains.

>>> from pdfreader import SimplePDFViewer
>>> fd = open(pdf_file_name, "rb")
>>> viewer = SimplePDFViewer(fd)

We use Image.ImageMask attribute to filter image masks from another images.
Let’s go to the 5th page and take the first image mask:

>>> viewer.navigate(5)
>>> viewer.render()
>>> inline_images = viewer.canvas.inline_images
>>> image_mask = next(img for img in inline_images if img.ImageMask)

Now convert it to Pillow object and save:

>>> pil_img = image_mask.to_Pillow()
>>> pil_img.save("mask.png")

Have a look! What a beautiful QR-code!

[image: ../_images/example-image-mask.png]

Useful links

	You find the complete list of PDF image attributes in the specification:

	
	Image (sec. 8.9.5) [https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf#page=206]

	InlineImage (sec. 8.9.7) [https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf#page=214]

How to parse PDF texts

Simple ways of getting plain texts and formatted texts from documents are discussed in the tutorial Extracting texts,
so let’s focus on advanced techniques.

In this example we build a parser for traffic crash reports,
that extracts:

	local report number

	reporting agency name

	crash severity

from the first page. The parser can be applied to all crash reports like that.

[image: ../_images/example-text-crash-report.png]
Let’s open the document and render the first page:

>>> from pdfreader import SimplePDFViewer
>>> fd = open(file_name, "rb")
>>> viewer = SimplePDFViewer(fd)
>>> viewer.render()

Every PDF page has one or more binary content streams associated with it. Streams may contain inline images,
text blocks, text formatting instructions, display device operators etc.
In this example we stay focused on text blocks.

Every text block in a stream is surrounded by BT/ET instructions and usually tricky encoded.
Fortunately the viewer understands lot of PDF operators and encoding methods, so after rendering
we may access human-readable PDF markup containing decoded strings.

>>> markdown = viewer.canvas.text_content
>>> markdown
"... BT\n/F3 6.0 Tf\n0 0 0 rg\n314.172 TL\n168.624 759.384 Td\n(LOCAL INFORMATION) Tj\n ..."

This text block contains instructions for a viewer (font, positioning etc.) and one string surrounded by brackets.

>>> viewer.canvas.strings
['LOCAL INFORMATION', 'P19010300000457', ...]

Text-related SimpleCanvas attributes are:

	text_content - contains all data within a single BT/ET block:
commands and text strings. All text strings are surrounded by brackets and decoded
according to the current graphical state (q, Q, gs, Tf and few other commands).
The value can be used to parse text content by PDF markdown.

	strings - list of all strings as they come in text blocks.
Just decoded plain text. No PDF markdown here.

How to parse PDF markdown

At this point markdown contains all texts with PDF markdown from the page.

>>> isinstance(markdown, str)
True

Let’s save it as a text file and analyze how can we extract the data we need.

>>> with open("example-crash-markdown.txt", "w") as f:
... f.write(markdown)
52643

Open your favorite editor and have a look at the file.

Now we may use any text processing tools like regular expressions, grep, custom parsers to extract the data.

>>> reporting_agency = markdown.split('(REPORTING AGENCY NAME *)', 1)[1].split('(', 1)[1].split(')',1)[0]
>>> reporting_agency
'Ohio State Highway Patrol'

>>> local_report_number = markdown.split('(LOCAL REPORT NUMBER *)', 1)[1].split('(', 1)[1].split(')',1)[0]
>>> local_report_number
'02-0005-02'

>>> crash_severity = markdown.split('(ERROR)', 1)[1].split('(', 1)[1].split(')',1)[0]
>>> crash_severity
'1'

Here we are!

Useful links

	Detailed description of PDF texts is here (see sec. 9) [https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf#page=237]

	Conforming reader graphical state reading is here (see sec. 8.4) [https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf#page=121]

How to parse PDF Forms

In most cases texts come within page binary content streams and can be extracted as in
Extracting texts and How to parse PDF texts.

There is one more place where text data can be found: page forms. Form is a special subtype of XObject which
is a part of page resources, and can be referenced from page by do command.

You may think of Form as of “small subpage” that is stored aside main content.

Have a look at one PDF form.

Let’s open the document and get the 1st page.

>>> from pdfreader import SimplePDFViewer
>>> fd = open(file_name, "rb")
>>> viewer = SimplePDFViewer(fd)

And now, let’s try to locate a string, located under the section B.3 SOC (ONET/OES) occupation title

[image: ../_images/example-parse-form.png]
>>> viewer.render()
>>> plain_text = "".join(viewer.canvas.strings)
>>> "Farmworkers and Laborers" in plain_text
False

Apparently, the texts typed into the form are in some other place. They are in Form XObjects,
listed under page resources. The viewer puts them on canvas:

>>> sorted(list(viewer.canvas.forms.keys()))
['Fm1', 'Fm10', 'Fm11', 'Fm12', 'Fm13', 'Fm14',...]

As Form is a kind of “sub-document” every entry in viewer.canvas.forms dictionary maps to
SimpleCanvas instance:

>>> form9_canvas = viewer.canvas.forms['Fm9']
>>> "".join(form9_canvas.strings)
'Farmworkers and Laborers, Crop, Nursery, and Greenhouse'

Here we are!

More on PDF Form objects: see sec. 8.10 [https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf#page=217]

How to extract CMap for a font from PDF

In this example we extract CMap data for a font from PDF file.

CMaps (Character Maps) are text files used in PDF to map character codes to character glyphs in CID fonts.
They come to PDF from PostScript.

Let’s open a sample document.

>>> from pdfreader import PDFDocument
>>> fd = open(file_name, "rb")
>>> doc = PDFDocument(fd)

Now let’s navigate to the 3rd page:

>>> from itertools import islice
>>> page = next(islice(doc.pages(), 2, 3))

and check page’s fonts.

>>> page.Resources.Font
{'R11': <IndirectReference:n=153,g=0>, ... 'R9': <IndirectReference:n=152,g=0>}
>>> len(page.Resources.Font)
9

We see 9 different font resources.
As pdfreader is a lazy reader the font data has not been read yet. We just see the names and
the references to the objects.

Let’s have a look at font named R26.

>>> font = page.Resources.Font['R26']
>>> font.Subtype, bool(font.ToUnicode)
('Type1', True)

It is PostScript Type1 font, and texts use CMap provided by ToUnicode attribute.
Font’s ToUnicode attribute contains a reference to the CMap file data stream:

>>> cmap = font.ToUnicode

Cmap file is a StreamBasedObject instance containing flate encoded binary stream.

>>> type(cmap)
<class 'pdfreader.types.objects.StreamBasedObject'>
>>> cmap.Filter
'FlateDecode'

that can be decoded by accessing filtered:

>>> data = cmap.filtered
>>> data
b'/CIDInit /ProcSet findresource ... end\n'
>>> with open("sample-cmap.txt", "wb") as f:
... f.write(data)
229

Voila! 229 bytes written :-)

As it is a text file you can open it with your favorite text editor.

How to extract Font data from PDF

In this example we extract font data from a PDF file.

Let’s open a sample document.

>>> from pdfreader import PDFDocument
>>> fd = open(file_name, "rb")
>>> doc = PDFDocument(fd)

Now let’s see what fonts the very first page uses:

>>> page = next(doc.pages())
>>> sorted(page.Resources.Font.keys())
['T1_0', 'T1_1', 'T1_2', 'TT0', 'TT1']

We see 5 fonts named T1_0, T1_1, T1_2, TT0 and TT1.
As pdfreader is a lazy reader the font data has not been read yet.
We just have the names and the references to the objects.

Let’s have a look at font T1_0.

>>> font = page.Resources.Font['T1_0']
>>> font.Subtype, font.BaseFont, font.Encoding
('Type1', 'SCMYNU+TimesNewRomanPSMT', 'WinAnsiEncoding')

It is PostScript Type1 font, based on TimesNewRomanPSMT. Texts use WinAnsiEncoding, which is almost like
python’s cp1252.

Font’s FontDescriptor contains a reference to the font file data stream:

>>> font_file = font.FontDescriptor.FontFile

The font file is a flate encoded binary stream StreamBasedObject

>>> type(font_file)
<class 'pdfreader.types.objects.StreamBasedObject'>
>>> font_file.Filter
['FlateDecode']

which can be decoded by accessing filtered

>>> data = font_file.filtered
>>> with open("sample-font.type1", "wb") as f:
... f.write(data)
16831

Voila! 16831 bytes written :-)

How to browse PDF objects

There could be a reason when you need to access raw PDF objects as they are in the document.
Or even get an object by its number and generation, which is also possible.
Let’s see several examples with PDFDocument.

Accessing document objects

Let’s take a sample file from How to access Document Catalog tutorial.
We already discussed there how to locate document catalog.

>>> from pdfreader import PDFDocument
>>> fd = open(file_name, "rb")
>>> doc = PDFDocument(fd)
>>> catalog = doc.root

To walk through the document you need to know object attributes and possible values.
It can be found on
PDF-1.7 specification [https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf].
Then simply use attribute names in your python code.

>>> catalog.Type
'Catalog'
>>> catalog.Metadata.Type
'Metadata'
>>> catalog.Metadata.Subtype
'XML'
>>> pages_tree_root = catalog.Pages
>>> pages_tree_root.Type
'Pages'

Attribute names are cases sensitive. Missing or non-existing attributes have value of None

>>> catalog.type is None
True
>>> catalog.Metadata.subType is None
True
>>> catalog.Metadata.UnkNown_AttriBute is None
True

If object is an array, access its items by index:

>>> first_page = pages_tree_root.Kids[0]
>>> first_page.Type
'Page'
>>> first_page.Contents.Length
3890

If object is a stream, you can get either raw data (deflated in this example):

>>> raw_data = first_page.Contents.stream
>>> first_page.Contents.Length == len(raw_data)
True
>>> first_page.Contents.Filter
'FlateDecode'

or decoded content:

>>> decoded_content = first_page.Contents.filtered
>>> len(decoded_content)
18428
>>> decoded_content.startswith(b'BT\n0 0 0 rg\n/GS0 gs')
True

All object reads are lazy. pdfreader reads an object when you access it for the first time.

Locate objects by number and generation

On the file structure level all objects have unique number an generation to identify them.
To get an object by number and generation
(for example to track object changes if incremental updates took place on file), just run:

>>> num, gen = 2, 0
>>> raw_obj = doc.locate_object(num, gen)
>>> obj = doc.build(raw_obj)
>>> obj.Type
'Catalog'

How to extract XObject or Inline Images, Image Masks

Extracting Inline Images is discussed in tutorial Extracting Page Images,
so let’s focus on XObject Images and Image Masks.

Extracting XObject Image

Open a sample document.

>>> from pdfreader import PDFDocument
>>> fd = open(file_name, "rb")
>>> doc = PDFDocument(fd)

Have a look at the sample file sample file.
There is a logo on the first page. Let’s extract it.

>>> page = next(doc.pages())

Let’s check a dictionary of XObject resources for the page:

>>> page.Resources.XObject
{'img0': <IndirectReference:n=11,g=0>}

This stands for an XObject named img0, and referenced under number 11 and generation 0.
The object has not been read by pdfreader still. We are lazy readers. We read objects only when we need them.
Let’s see what the object is.

>>> xobj = page.Resources.XObject['img0']

We just read the object (__getitem__ does this implicitly) and now we may access its attributes.

>>> xobj.Type, xobj.Subtype
('XObject', 'Image')

Wow! It’s really an image. Should we care about it’s internal PDF representation?
Of course no, let’s just convert it to
a Pillow/PIL Image [https://pillow.readthedocs.io/en/stable/reference/Image.html] and save.

>>> pil_image = xobj.to_Pillow()
>>> pil_image.save("extract-logo.png")

And here we are!

[image: ../_images/example-logo.png]
Try to open it and see any differences. It’s absolutely the same as in the document.

Now you can manipulate pil_image with usual PIL methods: rotate, convert, blur, split, inverse, merge
and so on, so on, so on.

Extracting Images: a very simple way

A very simple way also exisits.
Use SimplePDFViewer:

>>> from pdfreader import SimplePDFViewer
>>> fd = open(file_name, "rb")
>>> viewer = SimplePDFViewer(fd)
>>> viewer.render()

After rendering all 1st page images are on the canvas

>>> all_page_images = viewer.canvas.images
>>> all_page_inline_images = viewer.canvas.inline_images
>>> img = all_page_images['img0']
>>> img.Type, img.Subtype
('XObject', 'Image')

Now you can convert it with magic to_Pillow() method, save or do whatever you want!

Extracting Image Masks

Image Mask is just a specific kind of image actually. Except it is not always visible directly in your PDF Viewer.
Nevertheless it can be accessed absolutely the same way.

Let’s have a look at the example from Extracting Page Images,
and see what image masks it contains.

>>> from pdfreader import SimplePDFViewer
>>> fd = open(pdf_file_name, "rb")
>>> viewer = SimplePDFViewer(fd)

We use Image.ImageMask attribute to filter image masks from another images.
Let’s go to the 5th page and take the first image mask:

>>> viewer.navigate(5)
>>> viewer.render()
>>> inline_images = viewer.canvas.inline_images
>>> image_mask = next(img for img in inline_images if img.ImageMask)

Now convert it to Pillow object and save:

>>> pil_img = image_mask.to_Pillow()
>>> pil_img.save("mask.png")

Have a look! What a beautiful QR-code!

[image: ../_images/example-image-mask.png]

Useful links

	You find the complete list of PDF image attributes in the specification:

	
	Image (sec. 8.9.5) [https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf#page=206]

	InlineImage (sec. 8.9.7) [https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf#page=214]

How to parse PDF texts

Simple ways of getting plain texts and formatted texts from documents are discussed in the tutorial Extracting texts,
so let’s focus on advanced techniques.

In this example we build a parser for traffic crash reports,
that extracts:

	local report number

	reporting agency name

	crash severity

from the first page. The parser can be applied to all crash reports like that.

[image: ../_images/example-text-crash-report.png]
Let’s open the document and render the first page:

>>> from pdfreader import SimplePDFViewer
>>> fd = open(file_name, "rb")
>>> viewer = SimplePDFViewer(fd)
>>> viewer.render()

Every PDF page has one or more binary content streams associated with it. Streams may contain inline images,
text blocks, text formatting instructions, display device operators etc.
In this example we stay focused on text blocks.

Every text block in a stream is surrounded by BT/ET instructions and usually tricky encoded.
Fortunately the viewer understands lot of PDF operators and encoding methods, so after rendering
we may access human-readable PDF markup containing decoded strings.

>>> markdown = viewer.canvas.text_content
>>> markdown
"... BT\n/F3 6.0 Tf\n0 0 0 rg\n314.172 TL\n168.624 759.384 Td\n(LOCAL INFORMATION) Tj\n ..."

This text block contains instructions for a viewer (font, positioning etc.) and one string surrounded by brackets.

>>> viewer.canvas.strings
['LOCAL INFORMATION', 'P19010300000457', ...]

Text-related SimpleCanvas attributes are:

	text_content - contains all data within a single BT/ET block:
commands and text strings. All text strings are surrounded by brackets and decoded
according to the current graphical state (q, Q, gs, Tf and few other commands).
The value can be used to parse text content by PDF markdown.

	strings - list of all strings as they come in text blocks.
Just decoded plain text. No PDF markdown here.

How to parse PDF markdown

At this point markdown contains all texts with PDF markdown from the page.

>>> isinstance(markdown, str)
True

Let’s save it as a text file and analyze how can we extract the data we need.

>>> with open("example-crash-markdown.txt", "w") as f:
... f.write(markdown)
52643

Open your favorite editor and have a look at the file.

Now we may use any text processing tools like regular expressions, grep, custom parsers to extract the data.

>>> reporting_agency = markdown.split('(REPORTING AGENCY NAME *)', 1)[1].split('(', 1)[1].split(')',1)[0]
>>> reporting_agency
'Ohio State Highway Patrol'

>>> local_report_number = markdown.split('(LOCAL REPORT NUMBER *)', 1)[1].split('(', 1)[1].split(')',1)[0]
>>> local_report_number
'02-0005-02'

>>> crash_severity = markdown.split('(ERROR)', 1)[1].split('(', 1)[1].split(')',1)[0]
>>> crash_severity
'1'

Here we are!

Useful links

	Detailed description of PDF texts is here (see sec. 9) [https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf#page=237]

	Conforming reader graphical state reading is here (see sec. 8.4) [https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf#page=121]

How to parse PDF Forms

In most cases texts come within page binary content streams and can be extracted as in
Extracting texts and How to parse PDF texts.

There is one more place where text data can be found: page forms. Form is a special subtype of XObject which
is a part of page resources, and can be referenced from page by do command.

You may think of Form as of “small subpage” that is stored aside main content.

Have a look at one PDF form.

Let’s open the document and get the 1st page.

>>> from pdfreader import SimplePDFViewer
>>> fd = open(file_name, "rb")
>>> viewer = SimplePDFViewer(fd)

And now, let’s try to locate a string, located under the section B.3 SOC (ONET/OES) occupation title

[image: ../_images/example-parse-form.png]
>>> viewer.render()
>>> plain_text = "".join(viewer.canvas.strings)
>>> "Farmworkers and Laborers" in plain_text
False

Apparently, the texts typed into the form are in some other place. They are in Form XObjects,
listed under page resources. The viewer puts them on canvas:

>>> sorted(list(viewer.canvas.forms.keys()))
['Fm1', 'Fm10', 'Fm11', 'Fm12', 'Fm13', 'Fm14',...]

As Form is a kind of “sub-document” every entry in viewer.canvas.forms dictionary maps to
SimpleCanvas instance:

>>> form9_canvas = viewer.canvas.forms['Fm9']
>>> "".join(form9_canvas.strings)
'Farmworkers and Laborers, Crop, Nursery, and Greenhouse'

Here we are!

More on PDF Form objects: see sec. 8.10 [https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf#page=217]

How to extract CMap for a font from PDF

In this example we extract CMap data for a font from PDF file.

CMaps (Character Maps) are text files used in PDF to map character codes to character glyphs in CID fonts.
They come to PDF from PostScript.

Let’s open a sample document.

>>> from pdfreader import PDFDocument
>>> fd = open(file_name, "rb")
>>> doc = PDFDocument(fd)

Now let’s navigate to the 3rd page:

>>> from itertools import islice
>>> page = next(islice(doc.pages(), 2, 3))

and check page’s fonts.

>>> page.Resources.Font
{'R11': <IndirectReference:n=153,g=0>, ... 'R9': <IndirectReference:n=152,g=0>}
>>> len(page.Resources.Font)
9

We see 9 different font resources.
As pdfreader is a lazy reader the font data has not been read yet. We just see the names and
the references to the objects.

Let’s have a look at font named R26.

>>> font = page.Resources.Font['R26']
>>> font.Subtype, bool(font.ToUnicode)
('Type1', True)

It is PostScript Type1 font, and texts use CMap provided by ToUnicode attribute.
Font’s ToUnicode attribute contains a reference to the CMap file data stream:

>>> cmap = font.ToUnicode

Cmap file is a StreamBasedObject instance containing flate encoded binary stream.

>>> type(cmap)
<class 'pdfreader.types.objects.StreamBasedObject'>
>>> cmap.Filter
'FlateDecode'

that can be decoded by accessing filtered:

>>> data = cmap.filtered
>>> data
b'/CIDInit /ProcSet findresource ... end\n'
>>> with open("sample-cmap.txt", "wb") as f:
... f.write(data)
229

Voila! 229 bytes written :-)

As it is a text file you can open it with your favorite text editor.

How to extract Font data from PDF

In this example we extract font data from a PDF file.

Let’s open a sample document.

>>> from pdfreader import PDFDocument
>>> fd = open(file_name, "rb")
>>> doc = PDFDocument(fd)

Now let’s see what fonts the very first page uses:

>>> page = next(doc.pages())
>>> sorted(page.Resources.Font.keys())
['T1_0', 'T1_1', 'T1_2', 'TT0', 'TT1']

We see 5 fonts named T1_0, T1_1, T1_2, TT0 and TT1.
As pdfreader is a lazy reader the font data has not been read yet.
We just have the names and the references to the objects.

Let’s have a look at font T1_0.

>>> font = page.Resources.Font['T1_0']
>>> font.Subtype, font.BaseFont, font.Encoding
('Type1', 'SCMYNU+TimesNewRomanPSMT', 'WinAnsiEncoding')

It is PostScript Type1 font, based on TimesNewRomanPSMT. Texts use WinAnsiEncoding, which is almost like
python’s cp1252.

Font’s FontDescriptor contains a reference to the font file data stream:

>>> font_file = font.FontDescriptor.FontFile

The font file is a flate encoded binary stream StreamBasedObject

>>> type(font_file)
<class 'pdfreader.types.objects.StreamBasedObject'>
>>> font_file.Filter
['FlateDecode']

which can be decoded by accessing filtered

>>> data = font_file.filtered
>>> with open("sample-font.type1", "wb") as f:
... f.write(data)
16831

Voila! 16831 bytes written :-)

How to browse PDF objects

There could be a reason when you need to access raw PDF objects as they are in the document.
Or even get an object by its number and generation, which is also possible.
Let’s see several examples with PDFDocument.

Accessing document objects

Let’s take a sample file from How to access Document Catalog tutorial.
We already discussed there how to locate document catalog.

>>> from pdfreader import PDFDocument
>>> fd = open(file_name, "rb")
>>> doc = PDFDocument(fd)
>>> catalog = doc.root

To walk through the document you need to know object attributes and possible values.
It can be found on
PDF-1.7 specification [https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf].
Then simply use attribute names in your python code.

>>> catalog.Type
'Catalog'
>>> catalog.Metadata.Type
'Metadata'
>>> catalog.Metadata.Subtype
'XML'
>>> pages_tree_root = catalog.Pages
>>> pages_tree_root.Type
'Pages'

Attribute names are cases sensitive. Missing or non-existing attributes have value of None

>>> catalog.type is None
True
>>> catalog.Metadata.subType is None
True
>>> catalog.Metadata.UnkNown_AttriBute is None
True

If object is an array, access its items by index:

>>> first_page = pages_tree_root.Kids[0]
>>> first_page.Type
'Page'
>>> first_page.Contents.Length
3890

If object is a stream, you can get either raw data (deflated in this example):

>>> raw_data = first_page.Contents.stream
>>> first_page.Contents.Length == len(raw_data)
True
>>> first_page.Contents.Filter
'FlateDecode'

or decoded content:

>>> decoded_content = first_page.Contents.filtered
>>> len(decoded_content)
18428
>>> decoded_content.startswith(b'BT\n0 0 0 rg\n/GS0 gs')
True

All object reads are lazy. pdfreader reads an object when you access it for the first time.

Locate objects by number and generation

On the file structure level all objects have unique number an generation to identify them.
To get an object by number and generation
(for example to track object changes if incremental updates took place on file), just run:

>>> num, gen = 2, 0
>>> raw_obj = doc.locate_object(num, gen)
>>> obj = doc.build(raw_obj)
>>> obj.Type
'Catalog'

pdfreader API

	pdfreader.document submodule

	pdfreader.viewer submodule

	pdfreader.types submodule

	
pdfreader.version = '0.1.4'

	package version

PDF data extraction, browsing objects:

	
pdfreader.PDFDocument

	Alias for pdfreader.document.PDFDocument

	
pdfreader.SimplePDFViewer

	Alias for pdfreader.viewer.SimplePDFViewer

Major classes used by pdfreader.viewer.SimplePDFViewer

	pdfreader.viewer.SimpleCanvas

	pdfreader.viewer.Resources

	pdfreader.viewer.GraphicsState

	pdfreader.viewer.GraphicsStateStack

Major classes and types:

	pdfreader.types.objects.StreamBasedObject

	pdfreader.types.objects.DictBasedObject

	pdfreader.types.objects.ArrayBasedObject

	pdfreader.types.objects.Catalog

	pdfreader.types.objects.Page

	pdfreader.types.objects.PageTreeNode

	pdfreader.types.objects.Image

Objects you face up in page/form content streams:

	pdfreader.types.content.InlineImage

	pdfreader.types.content.Operator

pdfreader.document submodule

	
class pdfreader.document.PDFDocument(fobj)

	Constructor method

	
root = None

	references to document’s Catalog instance

	
header = None

	contains PDF file header data

	
trailer = None

	contains PDF file trailer data

	
pages()

	Yields document pages one by one.

	Returns

	Page generator.

	
build(obj, visited=None, lazy=True)

	Resolves all indirect references for the object.

	Parameters

	
	obj (one of supported PDF types) – an object from the document

	lazy (bool [https://docs.python.org/3/library/functions.html#bool]) – don’t resolve subsequent indirect references if True (default).

	visited – Shouldn’t be used. Internal param containing already resolved objects
to not fall into infinite loops

	
locate_object(num, gen)

	

pdfreader.viewer submodule

	
class pdfreader.viewer.SimplePDFViewer(*args, **kwargs)

	
	Simple PDF document interpreter (viewer).

	
	uses PDFDocument as document navigation engine

	renders document page content onto SimpleCanvas

	has graphical state

On initialization automatically navigates to the 1st page.

	Parameters

	fobj – file-like object: binary file descriptor, BytesIO stream etc.

	
current_page_number

	Contains current page number

	
gss

	Reflects current graphical state. GraphicsStateStack instance.

	
canvas

	Current page canvas - SimpleCanvas instance

	
resources

	Current page resources. Resources instance.

	
render()

	Renders current page onto current canvas by interpreting content stream(s) commands.
Charnges: graphical state, canvas.

	
navigate(n)

	Navigates viewer to n-th page of the document.
Side-effects: clears canvas, resets page resources, resets graphics state

	Parameters

	n – page number. The very first page has number 1

	Raises

	PageDoesNotExist – if there is no n-th page

	
next()

	Navigates viewer to the next page of the document.
Side-effects: clears canvas, resets page resources, resets graphics state

	Raises

	PageDoesNotExist – if there is no next page

	
prev()

	Navigates viewer to the previous page of the document.
Side-effects: clears canvas, resets page resources, resets graphics state

	Raises

	PageDoesNotExist – if there is no previous page

	
class pdfreader.viewer.SimpleCanvas

	Very simple canvas for PDF viewer: can contain page images (inline and XObject),
strings, forms and text content.

	
text_content

	Shall be a meaningful string representation of page content for further usage (decoded strings + markdown for example)

	
strings

	Shall be list of InlineImage
objects as they appear on page stream (BI/ID/EI operators)

	
images

	Shall be dict of name -> SimpleCanvas built from Form XObjects
displayed with do command

	
inline_images

	

	
forms

	

	
class pdfreader.viewer.GraphicsState(**kwargs)

	Viewer’s graphics state. See PDF 1.7 specification

sec. 8.4 - Graphics state [https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf#page=121]

sec. 9.3 - Text State Parameters and Operators [https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf#page=243]

	Parameters

	kwargs – dict of attributes to set

	
CTM

	current transformation matrix

	
LW

	line width

	
LC

	line cap

	
LJ

	line join style

	
ML

	miter limit

	
D

	line dash

	
RI

	color rendering intent

	
I

	flatness tolerance

	
Font [font_name, font_size]

	shall be a list if exists - [font_name, font_size] (Tf operator)

	
Tc

	char spacing

	
Tw

	word spacing

	
Tz

	horizontlal scaling

	
TL

	text leading

	
Tr

	text rendering mode

	
Ts

	text rise

	
class pdfreader.viewer.GraphicsStateStack

	Graphics state stack.
See PDF 1.7 specification
sec. 8.4.2 - Graphics State Stack [https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf#page=124]

	
save_state()

	Copies current state and puts it on the top

	
restore_state()

	Restore previously saved state from the top

	
class pdfreader.viewer.Resources(**kwargs)

	Page resources.
See sec 7.8.3 Resource Dictionaries [https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf#page=82]

	
class pdfreader.viewer.PageDoesNotExist

	Exception. Supposed to be raised by PDF viewers on navigation to non-existing pages.

pdfreader.types submodule

	
class pdfreader.types.objects.DictBasedObject(doc, *args, **kwargs)

	Dictionary-based object.
Automatically resolves indirect references on attributes/items access

	
class pdfreader.types.objects.StreamBasedObject(doc, stream)

	Stream-based object.
Automatically resolves indirect references on attributes access

	
class pdfreader.types.objects.ArrayBasedObject(doc, lst)

	Array-based object.
Automatically resolves indirect references on items access

	
class pdfreader.types.objects.Catalog(doc, *args, **kwargs)

	Dictionary based object. (Type = Catalog)
See PDF 1.7 specification sec. 7.7.2 - DocumentCatalog [https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf#page=71]

	
class pdfreader.types.objects.PageTreeNode(doc, *args, **kwargs)

	Dictionary based object. (Type = Pages)
See PDF 1.7 specification sec. 7.7.3.2 - Page Tree Nodes [https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf#page=76]

	
pages(node=None)

	Yields tree node pages one by one.

	Returns

	Page generator.

	
class pdfreader.types.objects.Page(doc, *args, **kwargs)

	Dictionary based Page object. (Type = Page)
See PDF 1.7 specification sec. 7.7.3.3 - Page Objects [https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf#page=77]

	
class pdfreader.types.objects.Image(doc, stream)

	Stream based XObject object. (Type = XObject, Subtype = Image)
See PDF 1.7 specification sec. 8.9 - Images [https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf#page=203]

	
to_Pillow()

	Converts image into PIL.Image object.

	Returns

	PIL.Image instance

	
class pdfreader.types.objects.Form(doc, stream)

	Stream based XObject object. (Type = XObject, Subtype = Form)
See PDF 1.7 specification sec. 8.10 - Form XObjects [https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf#page=217]

	
class pdfreader.types.objects.XObject(doc, stream)

	Stream based XObject object. (Type = XObject)
See PDF 1.7 specification sec. 8.8 - External Objects [https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf#page=201]

	
class pdfreader.types.content.InlineImage(entries, data)

	BI/ID/EI operators content.

Inline image looks like a stream-based object but really it is not.
We just follow Stream interface to have an option to interact with InlineImage
the same way as with XObject/Image

	
dictionary

	key-value image properties

	
data

	bytes, encoded image stream

	
to_Pillow()

	Converts image into PIL.Image object.

	Returns

	PIL.Image instance

	
class pdfreader.types.content.Operator(name, args)

	Page content stream operator. For example: /F01 12 Tf

	
name

	operator name

	
args

	list of operands

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pdfreader	
 Pythonic API for PDF documents

 	
 	
 pdfreader.document	

Index

 A
 | B
 | C
 | D
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | V
 | X

A

 	
 	args (pdfreader.types.content.Operator attribute)

 	
 	ArrayBasedObject (class in pdfreader.types.objects)

B

 	
 	build() (pdfreader.document.PDFDocument method)

C

 	
 	canvas (pdfreader.viewer.SimplePDFViewer attribute)

 	Catalog (class in pdfreader.types.objects)

 	
 	CTM (pdfreader.viewer.GraphicsState attribute)

 	current_page_number (pdfreader.viewer.SimplePDFViewer attribute)

D

 	
 	D (pdfreader.viewer.GraphicsState attribute)

 	data (pdfreader.types.content.InlineImage attribute)

 	
 	DictBasedObject (class in pdfreader.types.objects)

 	dictionary (pdfreader.types.content.InlineImage attribute)

F

 	
 	Font (pdfreader.viewer.GraphicsState attribute)

 	
 	Form (class in pdfreader.types.objects)

 	forms (pdfreader.viewer.SimpleCanvas attribute)

G

 	
 	GraphicsState (class in pdfreader.viewer)

 	
 	GraphicsStateStack (class in pdfreader.viewer)

 	gss (pdfreader.viewer.SimplePDFViewer attribute)

H

 	
 	header (pdfreader.document.PDFDocument attribute)

I

 	
 	I (pdfreader.viewer.GraphicsState attribute)

 	Image (class in pdfreader.types.objects)

 	
 	images (pdfreader.viewer.SimpleCanvas attribute)

 	inline_images (pdfreader.viewer.SimpleCanvas attribute)

 	InlineImage (class in pdfreader.types.content)

L

 	
 	LC (pdfreader.viewer.GraphicsState attribute)

 	LJ (pdfreader.viewer.GraphicsState attribute)

 	
 	locate_object() (pdfreader.document.PDFDocument method)

 	LW (pdfreader.viewer.GraphicsState attribute)

M

 	
 	ML (pdfreader.viewer.GraphicsState attribute)

N

 	
 	name (pdfreader.types.content.Operator attribute)

 	
 	navigate() (pdfreader.viewer.SimplePDFViewer method)

 	next() (pdfreader.viewer.SimplePDFViewer method)

O

 	
 	Operator (class in pdfreader.types.content)

P

 	
 	Page (class in pdfreader.types.objects)

 	PageDoesNotExist (class in pdfreader.viewer)

 	pages() (pdfreader.document.PDFDocument method)

 	(pdfreader.types.objects.PageTreeNode method)

 	PageTreeNode (class in pdfreader.types.objects)

 	
 	PDFDocument (class in pdfreader.document)

 	(in module pdfreader)

 	pdfreader (module)

 	pdfreader.document (module)

 	prev() (pdfreader.viewer.SimplePDFViewer method)

R

 	
 	render() (pdfreader.viewer.SimplePDFViewer method)

 	Resources (class in pdfreader.viewer)

 	resources (pdfreader.viewer.SimplePDFViewer attribute)

 	
 	restore_state() (pdfreader.viewer.GraphicsStateStack method)

 	RI (pdfreader.viewer.GraphicsState attribute)

 	root (pdfreader.document.PDFDocument attribute)

S

 	
 	save_state() (pdfreader.viewer.GraphicsStateStack method)

 	SimpleCanvas (class in pdfreader.viewer)

 	SimplePDFViewer (class in pdfreader.viewer)

 	(in module pdfreader)

 	
 	StreamBasedObject (class in pdfreader.types.objects)

 	strings (pdfreader.viewer.SimpleCanvas attribute)

T

 	
 	Tc (pdfreader.viewer.GraphicsState attribute)

 	text_content (pdfreader.viewer.SimpleCanvas attribute)

 	TL (pdfreader.viewer.GraphicsState attribute)

 	to_Pillow() (pdfreader.types.content.InlineImage method)

 	(pdfreader.types.objects.Image method)

 	
 	Tr (pdfreader.viewer.GraphicsState attribute)

 	trailer (pdfreader.document.PDFDocument attribute)

 	Ts (pdfreader.viewer.GraphicsState attribute)

 	Tw (pdfreader.viewer.GraphicsState attribute)

 	Tz (pdfreader.viewer.GraphicsState attribute)

V

 	
 	version (in module pdfreader)

X

 	
 	XObject (class in pdfreader.types.objects)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/example-image-mask.png

_static/example-logo.png

_images/example-logo.png

_images/example-parse-form.png
B. Temporary Need Information

1. Job Title *Nursery worker

45-2092

2. SOC (ONET/OES) code *

/ Yes

4. Is this a full-time position? *

No

3. SOC (ONET/OES) occupati

I armworkers and Laborers, Crop, Nursery, and Greenhouse

S. Begin Date * 10/22/2019

(mm/dd/yyyy)

6. End Date ™ 43,55/9020
(mm/ddlyyyy)

7. Worker positions needed/basis for the visa classification supported by this application

_images/btn_donateCC_LG.gif

_images/example-image-mask.png

_images/example-text-crash-report.png
e
B =TT TRAFFIC CRASH REPORT osnorss uswosrony o ron syt ror

Rerorostaen Xlow2 [Xons ||OANORMATON p19910300000457
or1p [X]omien. |[REPORTING AGENCY NAME * Nac+ sap
econpary crast 1-s0veD
JPRVATE PROPERTY | OHPO2 ||| 2 insoweo
counTy- [tocay” - LOCATION: . viAGe Tomes CRASH DATE / TIME" CRASH SEVERTTY
- ~PATAL
2 3 | 3 Vome g [Bath (Township of) 01/03/2019 05:24 L) N
oure rvee [route numacn [PREFX 1- VORTH] LOCATION ROAD NAME RORDTYPE LATITUDE cecoo s SUSPECTED
2 2-soumH 3- MNORINIURY
3 pres 40731165
] SR 309 i ‘SUSPECTED.
[roure v [RouTe NuUMBER [PREFDX 1 - NORTH REFERENCE ROAD NAME (ROAD. MILEPOST. HOUSE #1 ROADTYPE | LONGITUDE oo e 4~ IULRY POSSIBLE
H eer RD 84013212 > :
H L3 wesr [Thaver o o

_static/example-parse-form.png
B. Temporary Need Information

1. Job Title *Nursery worker

45-2092

2. SOC (ONET/OES) code *

/ Yes

4. Is this a full-time position? *

No

3. SOC (ONET/OES) occupati

I armworkers and Laborers, Crop, Nursery, and Greenhouse

S. Begin Date * 10/22/2019

(mm/dd/yyyy)

6. End Date ™ 43,55/9020
(mm/ddlyyyy)

7. Worker positions needed/basis for the visa classification supported by this application

nav.xhtml

 Table of Contents

 		
 pdfreader 0.1.4 Documentation

 		
 Installing / Upgrading

 		
 Installing with pip

 		
 Installing with easy_install

 		
 Installing from source

 		
 Python versions support

 		
 Tutorial

 		
 Prerequisites

 		
 How to start

 		
 How to access Document Catalog

 		
 How to browse document pages

 		
 How to start extracting PDF content

 		
 Extracting Page Images

 		
 Extracting texts

 		
 Examples and HowTos

 		
 PDFDocument vs. SimplePDFViewer

 		
 How to extract XObject or Inline Images, Image Masks

 		
 How to parse PDF texts

 		
 How to parse PDF Forms

 		
 How to extract CMap for a font from PDF

 		
 How to extract Font data from PDF

 		
 How to browse PDF objects

 		
 How to extract XObject or Inline Images, Image Masks

 		
 Extracting XObject Image

 		
 Extracting Images: a very simple way

 		
 Extracting Image Masks

 		
 Useful links

 		
 How to parse PDF texts

 		
 How to parse PDF markdown

 		
 Useful links

 		
 How to parse PDF Forms

 		
 How to extract CMap for a font from PDF

 		
 How to extract Font data from PDF

 		
 How to browse PDF objects

 		
 Accessing document objects

 		
 Locate objects by number and generation

 		
 pdfreader API

 		
 pdfreader.document submodule

 		
 pdfreader.viewer submodule

 		
 pdfreader.types submodule

_static/minus.png

_static/plus.png

_static/example-text-crash-report.png
e
B =TT TRAFFIC CRASH REPORT osnorss uswosrony o ron syt ror

Rerorostaen Xlow2 [Xons ||OANORMATON p19910300000457
or1p [X]omien. |[REPORTING AGENCY NAME * Nac+ sap
econpary crast 1-s0veD
JPRVATE PROPERTY | OHPO2 ||| 2 insoweo
counTy- [tocay” - LOCATION: . viAGe Tomes CRASH DATE / TIME" CRASH SEVERTTY
- ~PATAL
2 3 | 3 Vome g [Bath (Township of) 01/03/2019 05:24 L) N
oure rvee [route numacn [PREFX 1- VORTH] LOCATION ROAD NAME RORDTYPE LATITUDE cecoo s SUSPECTED
2 2-soumH 3- MNORINIURY
3 pres 40731165
] SR 309 i ‘SUSPECTED.
[roure v [RouTe NuUMBER [PREFDX 1 - NORTH REFERENCE ROAD NAME (ROAD. MILEPOST. HOUSE #1 ROADTYPE | LONGITUDE oo e 4~ IULRY POSSIBLE
H eer RD 84013212 > :
H L3 wesr [Thaver o o

_static/file.png

_static/up.png

_static/up-pressed.png

